Stochastic neuronal cell fate choices
نویسندگان
چکیده
منابع مشابه
Stochastic neuronal cell fate choices.
Though many neuronal cell fate decisions result in reproducible outcomes, stochastic choices often lead to spatial randomization of cell subtypes. This is often the case in sensory systems where expression of a specific sensory receptor gene is selected randomly from a set of possible outcomes. Here, we describe recent findings elucidating the mechanisms controlling color photoreceptor subtypes...
متن کاملMaintaining a stochastic neuronal cell fate decision.
Sensory systems generally contain a number of neuronal subtypes that express distinct sensory receptor proteins. This diversity is generated through deterministic and stochastic cell fate choices, while maintaining the subtype often requires a distinct mechanism. In a study published in the February 1, 2009, issue of Genes & Development, Lesch and colleagues (pp. 345-358) describe a new transcr...
متن کاملmicroRNAs: key triggers of neuronal cell fate
Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative ...
متن کاملStochastic and Deterministic Decision in Cell Fate
From bacteria to mammals, individual cells from an isogenic population are able to assume roles resulting in phenotypic heterogeneity. The mechanisms used to make these cell fate decisions range from highly deterministic to essentially random. This wide range of behaviour springs from the interplay of intracellular molecular kinetics, the topologies of underlying gene regulator networks, epigen...
متن کاملEngineering of regulated stochastic cell fate determination.
Both microbes and multicellular organisms actively regulate their cell fate determination to cope with changing environments or to ensure proper development. Here, we use synthetic biology approaches to engineer bistable gene networks to demonstrate that stochastic and permanent cell fate determination can be achieved through initializing gene regulatory networks (GRNs) at the boundary between ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Neurobiology
سال: 2008
ISSN: 0959-4388
DOI: 10.1016/j.conb.2008.04.004